
Pierre

Rioux

By

GIT (explained
with

diagrams)

ACE lab
Developer
Meeting

May 2013

ACE lab
Meeting May 2015 November

2016

Revised again: October 2019, May 2022

Part 1: Basic Concepts

- directory trees
- commits
- commit graph
- branches
- merging
- references (heads, tags)
- repositories
- work area
- commit progress
- multiple repositories
- repo convention
- commit races

Part 2: Working With GIT

- git init work area
- git clone
- checking out
- staging area == index
- three trees
- operations graph
- git status
- git commit
- git pull and push
- conflicts
- manual merge
- recap whole cycle

Table Of Contents

Rejoice, for this is the only slide with bullet points!

Part 1: Basic Concepts
(Where we think on an abstract level and we use
only three of the following shapes, unfortunately)

Hi! I'm not
used!

project/

login.phpuser.rb

php/

app/

models/

task.rb

main.php

config/

Triangle: a directory tree

Circle: a commit

subtree state

id:

ac5607e46aadba49f2f7a2151e4742ba1adfed6b

short id:

ac5607 or ac

Note: basically immutable

f0 3c 05

Commit graph

Time

Note: in the real structure, arrows point the other way…

5a

Commit graph branching

Time

1c b4

fe

aa 3a

ca b9

Commit graph merging

Time

5db4 fe

aa 3a

ca 21

3a

This is a 'merge' commit

11

b9

7

To
po

lo
gi

ca
l

Time

81 2

5 6

3 4 9

10

R
ea

l t
im

e 1 2 3 4 5 6 7 8 9 10

Commit graph ordering

7

81 2

5 6

3 4 9

10

11

References

b4 fe

aa 3a

ca b9

master

project1

"CBRAIN 3.1.2"

rewrite

a head, or
branch namea tag

Rounded Rectangle: Bare repository

11

b4 fe

aa 3a

ca b9

master

project1

"CBRAIN 3.1.2"

rewrite

Repository + Work area

f5

b4

fe

aa 3a

ca

master

project1

Work Area

(Content of b9)

GIT manages this
User manages this

"Checking out"

master

b9

ca

master

etc

Commit progress (simplified view)

b9

ca b9

master

etc mod
b9

ca b9

master

etc 4d4d

(user works on files)

(user commits to repository)

master

master

master

b9

CVS/SVN vs GIT
CVS or

Subversion
Repo

GIT repo

GIT repo

User 1's computer

User 3's computer

GIT repo

User 2's computer

User 1's computer

User 2's computer

User 3's computer

"Main Repo": purely a convention

User 1's computer

User 3's computer

GitHub

User 2's computer

User 4's computer

Multiple repositories

ca b9

master

etc

ca

master

etc

4d

master

etc

User 1's computer

User 2's computer

GitHub

ca

Note: there is NO checked-out
directory structure at GitHub!

(No triangle)

b9

b9

4d

b9

GitHub Forks

user's computer

GitHub: owner/mysoft GitHub: user/mysoft

Main project repo Personal fork

Private work area

Typical Fork Workflow

user's computer

GitHub: owner/mysoft GitHub: user/mysoft

Main project repo Personal fork

Private work area

(user pulls from main repo)
(user pushes to fork repo)

(user makes pull requests to main repo)

Commit races lead to merging
m

GitHub
m m

Tarek Pierre

M
on

da
y

m m

Tu
es

da
y

m m

Fr
id

ay

m

Initial
state

Tarek
commits

m

Tarek
pushes

m

m mW
ed

ne
sd

ay

Pierre
commits

m
m m

Th
ur

sd
ay

Pierre
pulls with

automergem

Sa
tu

rd
ay Pierre

pushes two
commit nodes

Part 2: Working With GIT
(Where we run UNIX commands and do not even

introduce a single new shape, except for a dotted one)

Oh yeah!

Me.

Creating your own blank GIT repository
> mkdir Abc
> cd Abc
> git init

Abc

Secretely, as Abc/.git/
Never go play in there!

You can also run git init in a directory that
already has files; they will not be touched.

master

Locally cloning another repository
> git clone https://github.com/aces/cbrain.git MyCBRAIN

MyCBRAIN
(content of b9)

As MyCBRAIN/.git/

f5

b4

fe

aa 3a

ca

master

project1

This also sets up the configuration for pulling and
pushing to the remote repository on GitHub.

master

check out

b9

Checking out (1/2)

f5

b4

fe

aa 3a

ca

master

project1

Work Area

(Content of b9,
a.k.a 'master')

"Checking out"

master

> git checkout master

b9

Checking out (2/2)

b4

fe

aa 3a

ca b9

master

project1

Work Area

(Content of f5,
a.k.a 'project1')

"Checking out"

project1

> git checkout project1

Note: there is no such concept as 'checking in' !

f5

Branching out

master

project1

Work Area

(Content of f5,
a.k.a 'project1')

project1

> git branch tintin

tintin

> git branch haddock aa

haddock

> git branch tournesol master

tournesol

Note: nothing is modified in the current environment,
not even the currently checked out branch.

b4

fe

aa 3a

ca b9

f5

Dotted Circle: Staging area ('index')

b9

master

Work Area

(Content of b9,
a.k.a 'master')

master
Staging

Area

Staging area initialized to be a perfect
shadow of HEAD of branch 'master' (b9).

Three trees

Work Area

Immutable

Staging AreaCommit HEAD

MUST be changed using
GIT commands

Can be changed using
UNIX commands:

editor, cp, rm, mv, etc
(with caveats)

GIT operations on individual files

> git reset -- file

> git checkout -- file

> git rm file

> git add file

> git mv file

(For new and modified files)

> editor
> git checkout HEAD file

Work Area

Staging Area

Commit HEAD

Note:
In purple: normal operations
In orange: undo operations

GIT status
unix> edit project_file_1
unix> edit project_file_2
unix> git add project_file_2
unix> git rm project_file_BAD
unix> edit NEW_FILE.txt
unix> git add NEW_FILE.txt
unix> git mv elizabeth.txt charles.txt
unix> touch irrelevent.txt
unix> git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: project_file_BAD
new file: NEW_FILE.txt
modified: project_file_2
renamed: elizabeth.txt -> charles.txt
#
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: project_file_1
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
irrelevent.txt

New files in work area, not registered
to be in GIT repository at all.

What is changed in the work area,
but WON'T go in the next commit.

What would go into
the next commit.

GIT status -s

unix> git status -s
D project_file_BAD
A NEW_FILE.txt
 M project_file_1
M project_file_2
R elizabeth.txt -> charles.txt
?? irrelevent.txt

Status of the files in the Staging Area

Status of the files in the Work Area

GIT diff

unix> git diff
diff --git a/BrainPortal/Rakefile b/BrainPortal/Rakefile
index 02a5494..dfd0c36 100644
--- a/BrainPortal/Rakefile
+++ b/BrainPortal/Rakefile
@@ -23,14 +25,11 @@
 # Add your own tasks in files placed in lib/tasks ending in .rake,
 # for example lib/tasks/capistrano.rake, and they will automatically be available to Rake.

-require File.expand_path('../config/application', __FILE__)
-require 'rake'
-

-CbrainRailsPortal::Application.load_tasks
+CbrainRailsPortal::Application.load_tasks.2

fe ca

master

b9 SA
Work Area

> git diff [file]

> git diff --cached [file]> git diff fe ca [file]

GIT commit
master

Work Area
(b9 + mods)

master

Work Area
6a

unix> git commit -m 'JUNK COMMIT'
[master 6a13d12] JUNK COMMIT
 4 files changed, 2 insertions(+), 165 deletions(-)
 delete mode 100644 BrainPortal/Gemfile.lock
 create mode 100644 BrainPortal/NEW_FILE.txt
 rename BrainPortal/{config.ru => config.ru.renamed} (100%)

Note: No editor invoked

Current staging area, future commit

New 'blank' staging area, shadow of 6a

GIT commands
b9

b9 6a

GIT push (simple case)

master

master

Work Area
(6a + mods)

unix> git push
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 287 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
 b9d9623..6a13d12 master -> master

master

U
se

r's
 C

om
pu

te
r

G
itH

ub

Before push After push

Note: nothing is modified on this side

b9

b9 6a

b9 6a

GIT push (merge needed)
master

Work Area
(6a + mods)

unix> git push
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.

master

U
se

r's
 C

om
pu

te
r

G
itH

ub

Before push;
this prevents it

b9 6a

b9 d4

unix> git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
 b9d9623..a93a987 master -> origin/master
Merge made by recursive.
 models_report.rb | 3 +++
 1 files changed, 3 insertions(+), 0 deletions(-)

GIT pull (with merge)
U

se
r's

 C
om

pu
te

r

Before pull

master

master

During pull

After pull
and merge

Work Area
(a9 + mods)

Note: the merged commit is also
checked-out automatcially!

b9 6a

d4

a9

b9 6a

d4

b9 6a

GIT push of merged commits

unix> git push
Counting objects: 8, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 539 bytes, done.
Total 5 (delta 3), reused 0 (delta 0)
Unpacking objects: 100% (5/5), done.
 b9d9623..a93a987 master -> master

U
se

r's
 C

om
pu

te
r

G
itH

ub

Before push After push

master

Work Area
(a9 + mods)

master
master

b9 6a

d4

a9

b9 d4
b9 6a

d4

a9

Merge conflicts

unix> git pull
remote: Counting objects: 8, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 5 (delta 3), reused 0 (delta 0)
Unpacking objects: 100% (5/5), done.
 b9d9623..d4087aa master -> origin/master
Auto-merging my_file.txt
CONFLICT (content): Merge conflict in my_file.txt
Automatic merge failed; fix conflicts and then commit the
result.

Work Area

(with merged files)

my_file.txt contains conflict tokens

Note: work area and git repo are now in a special 'merge mode'.

b9 6a

d4

Conflict resolution

CBRAIN Project
<<<<<<< HEAD
Changed in d4, line 1
Changed in d4, line 2
Changed in d4, line 3
Changed in d4, line 4
Changed in d4, line 5
Changed in d4, line 6
=======
#
Changed in 6a, line 1
Changed in 6a, line 2
Changed in 6a, line 3
#
>>>>>>> d4087aa6f2350a94eb86ae210a1116c4e7a55b49
This program is free software: you can redistribute it and/or modify

Excerpt from my_file.txt

These three lines were added by GIT

Edit the file;
Fix these lines;
Run "git add";
Commit.

You must resolve all conflicts in all files and then
commit before you can proceed to use GIT as usual.

Merging branches

master

project1

Work Area

(Content of b9,
a.k.a 'master')

> git merge project1

master

project1

Work Area

(Content of 22,
still 'master')

f5

b4

fe

aa 3a

ca b9

f5

b4

fe

aa 3a

ca b9 22

Branching towards a trunk

trunk

UI_work

bugfix2

newfeat

bugfix1

Merge events FROM side branches TO trunk

Branching towards subprojects

trunk

mali

france

india

Merge events FROM trunk TO side branches

germany

An example: CBRAIN weaving

> git checkout # optional
> edit; git add/rm/mv/reset etc
> git commit

> git pull
> (resolve conflicts; commit)
> git push

Typical Work Cycle: No Forks

Repeat: Make
progress in your
local repository.

Repeat.

Just once:
Integrate other
people's work.

user's computerGitHub: owner/mysoft

Main project repo

> git checkout somebranch
> git pull github somebranch
> git checkout -b newstuff

> edit; git add/rm/mv/reset etc
> git commit

> git push myfork newstuff
> (use GitHub's interface to make
 pull request)

Typical Work Cycle: With Forks

Repeat: Make
progress in your
local repository.

Repeat.

Just once:
select a base
starting point
from other
people's work.

user's computer

GitHub: owner/mysoft

Main project repo

GitHub: user/mysoft

Personal fork

Just once: send
modifications to
fork

The End

everyone

thank you

Addendum: Rebasing

feature

master

> git checkout feature
> git rebase f5

f5b4

fe

aa 3a

ca

feature

master

b4

fe

aa 3a

ca

feature

d3 11

f5

Rebase Merge

bugfix1

main

bugfix1

main

	Title
	Contents
	Part 1
	Triangle
	Circle
	Commit Graph
	Branching
	Merging
	Real Time
	References
	Repository
	Work Area
	Commit Progress
	CVS vs GIT
	Repo Conventions
	Multi Repos
	GitHub Forks 2
	GitHub Forks
	Commit Race
	Part 2
	GIT Init
	GIT Clone
	Checking Out 1
	Checking Out 2
	Branching Out
	Staging Area
	Three Trees
	Operations
	GIT Status
	GIT Status -s
	GIT Diff
	GIT Commit
	GIT Push (Simple)
	GIT Push (Fail)
	GIT Pull + Merge
	GIT Push Merge
	Failed Merge
	Failed Merge 2
	GIT Merge
	Multi Branches 1
	Multi Branches 2
	Weaving Progress
	Day To Day 1
	Day To Day 2
	The End
	Rebasing
	Squash Merge

